H(t)=-16t^2+64t+100

Simple and best practice solution for H(t)=-16t^2+64t+100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+64t+100 equation:



(H)=-16H^2+64H+100
We move all terms to the left:
(H)-(-16H^2+64H+100)=0
We get rid of parentheses
16H^2-64H+H-100=0
We add all the numbers together, and all the variables
16H^2-63H-100=0
a = 16; b = -63; c = -100;
Δ = b2-4ac
Δ = -632-4·16·(-100)
Δ = 10369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-63)-\sqrt{10369}}{2*16}=\frac{63-\sqrt{10369}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-63)+\sqrt{10369}}{2*16}=\frac{63+\sqrt{10369}}{32} $

See similar equations:

| (3)m=4(3) | | -4(3x+8)+6(2x-6)=7 | | x*16*50=49.50 | | -8c+8-4c=-10c-10 | | -3x+32+5x=-42* | | -4(4x+8)+6(2x-6)=7 | | -1/3=m-3/4 | | 23)j/3=4 | | -5n+15=50 | | (3)m=4 | | A=½b | | -s+2/2=1 | | 3x-(4+2x)=2 | | 12r-3=-13+11r | | 22)3h=27 | | 46=2.n-10 | | f−20=–6 | | 3=10-7c | | 27^x=3^2x+6 | | x/6-1=-23 | | 16s+9=6s+19 | | 1/4(x-10=-4 | | 72=8(11+q) | | -2x+10+7x=6x+7 | | 8+9y=6+10y | | r/3=3-1 | | 5/9(x-32)=-11 | | 0.75n+1.5=59.25 | | 3b+-1=-4 | | 3x-6(3-4x)=9x–2 | | -7(4+d)-11=-11 | | (6x-20)°+(6x-4)°=180 |

Equations solver categories